Interactive Visual Analysis of Time-Dependent Flows

Helwig Hauser (Univ. of Bergen) et al.

Context

- This talk:
 - about Interactive Visual Analysis (IVA) in general and the IVA of simulation data in particular,
 - and specifically IVA of time-dep. flow data

- In general:
 - IVA is one methodology within visualization
 - to facilitate insight into large and/or complex data
 - via interactive exploration and analysis
Interactive Visual Analysis – main idea

- On top level:
 - due to the data\(\rightarrow\)information\(\rightarrow\)knowledge cascade (knowledge/insight being implicitly coded within data), we need **means to abstract insight from data**
 - integrating the best from "two worlds", we combine
 - data exploration/analysis by the **user**, based on **interactive visualization**
 - and data analysis by the **computer**, based on **statistics, machine learning, etc.**

- IVA, in general, is a loop (**interactive & iterative**),
 1. usually starting with **some data visualization first**,
 2. followed by **user inspection** and **certain interaction**
 3. the user interaction causes a **new visualization**, \(\Rightarrow\) 2.
 4. user-induced **computations** lead to vis., again, \(\Rightarrow\) 2.

- IVA works for engineers, bioinformaticians, climatologists, …

Basis of IVA

- Given some data, **e.g.**,
 - a (large) bunch of time series,
 - some (larger) tables of numbers (usually multiple columns),
 - spatiotemporal data that is multivariate (like here!),
 - etc. (yes, it’s really that general!),

- IVA is
 - a flexible exploration & analysis methodology
 - that utilizes a variety of **different views on the data**
 - and **feature extraction** (interactively & computationally)

- IVA enables
 - interactive **information drill-down**, while navigating between **overview & detail**, **seeing the unexpected**, e.g., for **hypothesis generation**, **steering the analysis**
 - **IVA bridges the gap between the data & the user**
Level 1: KISS-principle IVA

- **Base-level IVA** *(solves many problems, already!)*
 - bring up at least two different views on the data
 - allow to mark up interesting data parts *(brushing)*
 - utilize **focus+context visualization** to highlight the user selection consistently(!) in all views *(linking)*

- **Example (interactively?)…**

- With base-level IVA, you can already do
 - **feature localization** – brush high temperatures in a histogram, for ex., and see where they are in spacetime
 - **local investigation** – for ex., select from spacetime and see how attributes are there (compared to all the domain)
 - **multivariate analysis** – brushing vorticity values and studying related pressure values (selection compared to all)

Getting more out of IVA (advanced IVA)

- Starting from base-level IVA,
 - we enable the identification of complex features, for ex., by exploiting a feature definition language
 - we realize **advanced brushing schemes**, e.g., by realizing a similarity brush
 - we facilitate **interactive attribute derivation**, e.g., by means of a formula editor
 - we integrate statistics/ML on demand, e.g., by linking to R

- With advanced IVA,
 - we drill deeper (data→selections→features→…)
 - we read between the lines (semantic relations)
 - answer complex questions about the data
Flow Simulation Data and IVA

- Data from computational simulation, e.g., CFD, is
 - usually given on (large & interesting) **spatial grids**
 (often also **time-dependent</special focus here**)!
 - often **multivariate** in terms of the simulated values
 - based on a **continuous model**

- Considering such data in the $d(x)$ form
 - with d being the **dependent variables** (the simulated
 variates), for ex., velocities, pressure, temperature, ...
 - and x representing the **independent variables, i.e.,**
 the **domain** of the data (usually space and time)

- With IVA,
 - we relate x and d (feature localization, local investigation)
 as well as d_i and d_j (multivariate analysis)
 - we consider $\delta(d)$, i.e., derived “views” on the data
 - either explicitly (by attribute derivation)
 - or implicitly (by advanced interaction mechanisms)
Derived “Views” (higher-level IVA) – local

- **Local** [vs. non-local (semi-local, global)] derivations
 - considering derivatives, e.g., wrt. space/time, incl.
 - **temporal derivatives** $d_t \frac{d}{dt}$ // Eularian view
 - **spatial derivatives** $\nabla d_x \frac{d}{dx}$, in particular also the spatial velocity gradient $J=\nabla v (dv/dx)$
 - **vector calculus** based on —"—, inc.
 - divergence $\nabla \cdot v$ ($\nabla \cdot v$)
 - rate of strain $S = (J + J^T)/2$
 - curl (vorticity) ω ($\nabla \times v$)
 - **local feature detectors**, e.g., based on —"— [Bürger et al., 2007]
 - vorticity magnitude $|\omega|$ [Strawn et al., 1998]
 - normalized helicity [Levy et al., 1990]
 - Hunt’s Q [Hunt et al., 1988] $Q = \|\Omega\|^2 - \|S\|^2$
 - kinematic vorticity number [Truesdell, ’54] $N_k = \|\Omega\| / \|S\|$
 - λ_2 according to Jeong & Hussain (1995) $\lambda_2(\Omega^2 + S^2)$

Derived “Views” (higher-level IVA) – non-local

- **Non-local** (semi-local, global) derivations
 - **local neighborhoods** $P_r(x) = \{ y \mid |x-y|<r \}$
 - **local neighborhood statistics** [Angelelli et al., 2011], like also moving averages, for ex.
 - stream/-streak/-pathlet statistics (e.g., averages)
 - local normalization
 - etc.

- **global methods**
 - reconstructions from scale-space representation, e.g., POD-based reconstruction [Pobitzer et al., 2011]
 - topology-based approaches, e.g., uncertain vector field topology [Otto et al., 2010 & 2011]
 - integration-based approaches, e.g., FTLE computation
Unsteady Vortex Extraction with IVA

- Going unsteady in vortex extraction: [Fuchs et al., 2008]
 - Based on the approach by Sujudi & Haimes (1995), i.e., to search where $\epsilon_r||v$ (eigenvector corresponding to the only real eigenvalue of ∇v),
 - and a re-formulation [Peikert & Roth, 1999] as $a_E||v$
 (with $a_E=(\nabla v)v$, only for ∇v with only one real eigenvalue),
 - we can now search for all places with $a_L||v$
 (with $a_L=Du/dt$, i.e., the particle acceleration $(\nabla v)v+dv/dt$)
 - higher-order [Roth & Peikert, 1998] $b_E||v \Rightarrow b_L||v$
 ($b_L=D^2u/dt^2$)

Time-related Derivations in IVA

- To access unsteady aspects of flows, [Doleisch et al., 2006]
 - we look at temporal changes dd_i/dt, for ex., approximated by central differences, possibly computed after some temporal smoothing
 - we derive time-step-relative normalization (d_i normalized to $[0,1]$ per time-step, also zero-preserving)
 - we allow the interpolation of selections over time (like in keyframe animation)
 - we provide a measure of how stationary a d_i is (for how long it stays within an ϵ-neighborhood)
 - we provide a measure to capture local extrema (both maxima of d_i as well as minima of d_i)
Pathline Attributes and IVA

- Getting insight into flow via pathlines and their attributes
 - we compute pathlines and various pathline attributes describing their local and global behavior
 - we use IVA to explore the attribute space
 - many parameters computed – scalar and time dep.
 - multi-step analysis introduced – start with coarse pathlines, refine where necessary
 - projections of pathlines to 2D planes used for interaction

Factor Analysis of Pathline Attributes IVA

- Main problem with parameters – parameter selection
 - statistical analysis in order to select relevant parameters
 - find an universal starting set of parameters
 - six data sets analyzed (5 simulated, 1 analytical)
 - six attributes identified (1 related to shape, 1 to vortices, 4 to motion) which for a common expressive set for analysis of all data sets
Conclusions

- IVA helps to integrate the user’s and the computer’s strengths to enable exploration and analysis
- IVA is interactive and iterative
- An approach to realize semantic abstraction from data (to features, insight)
- Enables the joint analysis based on multiple perspectives, e.g., several feature detectors
- Helps with questions of different character (physical, geometric, statistical, …)
- Non-trivial integration of Eulerian and Langrangian data for IVA

Acknowledgements

- You – thank you for your attention!
 Question?

- St. Oeltze, P. Angelelli, R. Laramée, et al.
- AVL, SimVis
- SemSeg project (funded in the context of the FET-Open scheme of FP7, #226042)